On the Crush Worthiness of a Laterally Confined Bar Under Axial Compression
نویسنده
چکیده
A combined experimental/analytical work is carried out to elucidate the energy absorption potential of laterally confined bars under monotonically increasing edge displacement. The thickness t and length L of the bar, as well as the wall-to-wall separation distance, h, are systematically varied. Real-time observations show that the deformation of the bar is characterized by progressive buckling and folding, with the fully compacted material exhibiting repetitious cell unit whose wavelength approximately equals four times the bar thickness. The specific crush energy is little sensitive to the thickness of the bar but strongly varies with t /h, the “volume fraction” of the structure, attaining a maximum when t /h 0.5. The main sources for energy dissipation are simple compression, plate folding and friction between the bar and the constraining walls, the latter of which dominates for L / t 10. The experimental data are found to be well predicted by simple analytic expressions derived from limit plasticity analysis and incompressible material behavior. The simple configuration studied may shed light on the behavior of more complex structures such as honeycombs, foams, and thin-walled tubes, and may serve as a basis for multi-layer design possessing improved crush energy. DOI: 10.1115/1.2047595
منابع مشابه
Lateral confinement as a means for enhancing load bearing and energy absorption in axially compressed tubes
The energy absorption and load-bearing capacity of single and concentric multilayer tubes under axial compression are studied with an eye toward optimization per structural mass or volume available for deformation. The specimens are laterally confined on their inner and outer surfaces by rigid walls to stabilize the deformation, but the effect of confinement diminishes as the number of layers i...
متن کاملExperimental and Numerical Simulation Investigation on Crushing Response of Foam-Filled Conical Tubes Stiffened with Annular Rings
In this paper, crashworthiness characteristics of conical steel tubes stiffened by annular rings and rigid polyurethane foam are investigated. For this purpose, wide circumferential rings are created from the outer surface of the conical tube at some determined areas along tube length. In fact, this method divides a long conical tube into several tubes of shorter length. When this structure is ...
متن کاملOn optimizing crash energy and load-bearing capacity in cellular structures
The energy absorption and load-bearing capacity under axial compression of some model cellular structures are studied with an eye toward optimization based on structural mass or volume available for deformation. Three configurations are considered: multilayer, multi-cell and multi-tube, all of a rectangular-cell topology. Loading is applied either parallel or normal to the cell axis. The cell’s...
متن کاملPostbuckling Equilibrium Path of a Long Thin-Walled Cylindrical Shell (Single-Walled Carbon Nanotube) under Axial Compression Using Energy Method
In this paper, an elastic shell model is presented for postbuckling prediction of a long thinwalledcylindrical shell under axial compression. The Ritz method is applied to solve the governingequilibrium equation of a cylindrical shell model based on the von-Karman type nonlinear differentialequations. The postbuckling equilibrium path is obtained using the energy method for a long thin-walledcy...
متن کاملCurvature Effects on Thermal Buckling Load of DWCNT Under Axial Compression Force
In this article, curvature effects on elastic thermal buckling of double-walled carbon nanotubes under axially compressed force are investigated using cylindrical shell model. Also, the small scale effect is taken into account in the formulation. The dependence of the interlayer van der Waals (vdW) pressure on the change of the curvatures of the inner and outer tubes at that point is considered...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006